• Bio
  • Blog
  • Experience
  • Portfolio
  • OSS
  • Publication
  • Uses
  • Blog
    • ๐Ÿ“ˆ Golang profiling made easy
    • ๐Ÿ“ˆ Run an ArchLinux sandbox with Lima on MacOS
    • ๐Ÿง  Build a personal website with just two dollars
    • ๐Ÿ“ˆ Level up your dotfiles with scripting
  • Uses
  • Contributed-Projects
    • HQQ
    • bashdb
    • podman-compose
    • golang-migrate
    • jupyter_server
    • terraform-provider-ucloud
    • titra
    • WeKan
    • RedisFullCheck
    • PowerJob
    • RocketMQ
    • instaviz
    • fastjson
    • lua-cjson
    • lua-resty-websocket
    • mybatis/generator
    • fcgiwrap
  • Publications
    • Towards Superior Quantization Accuracy: A Layer-sensitive Approach
    • A Mixed Quantization Approach for Data-Free Quantization of LLMs
  • Created-Projects
    • lm-quant-toolkit
    • ResearchBuddy
    • ghminer
    • dotfiles
    • localenv
    • doxgen-maven-plugin
    • grpc-converter-maven-plugin
    • jar-probe
    • hawks
  • Projects
  • Experience
  • Portfolio

lm-quant-toolkit

2024-09-05 ยท 1 min read
Go to Project Site

A suite of tools to facilitate large neural network quantization research. It includes a quantization harness to drive quantization experiments on large language models and vision models. It also offers tools to visualize and interpret experiment results.

Last updated on 2024-09-05
AI LLM Quantization LLM PyTorch Python R Jupyter
Justin Zhang
Authors
Justin Zhang
Software Engineer/Researcher

ResearchBuddy 2023-10-09 →

ยฉ 2025 Justin Zhang. All rights reserved.

Published with Hugo Blox Builder โ€” the free, open source website builder that empowers creators.